New Hampshire Energy Efficiency
Calculation of Lost Base Revenue
For Measures installed beginning in 2019

Report Issued by the NH Lost Base Revenue Working Group, Docket No. ###-####.
June 13, 2018
Table of Contents:

I. Introduction

II. Glossary of Terms

III. Derivation of kWh Savings

IV. Derivation of kW Savings

V. Derivation of Average Distribution Rates (ADR)

VI. Discussion of Ratchets

VII. Appendices
 A. Example of Project Worksheet with kW Savings
 B. LBR C&I Savings Calculations
 C. Sample LBR ADR Calculations
 D. Ratchet Analysis
I. Introduction

A. Lost Base Revenue (LBR) Working Group Background

The scope of the LBR Working Group’s activities is defined by Commission Order No. 26,095 in Docket DE 17-136, which approved the Settlement Agreement. The Settlement Agreement adopts the method of calculating the average distribution rate proposed by the Utilities (where the average distribution rate used in the calculation blends the kW and kWh rate components) for energy efficiency upgrades installed in 2017 and 2018. For upgrades installed in 2019 and thereafter, the method proposed by Staff will be used, whereby the average distribution rate is disaggregated into kW and kWh components. Per the Settlement Agreement, the LBR Working Group was established in 2018 to determine the kW values to be used in that calculation and to consider the general impact of customer peak load and the general impact of demand charge ratchets on those kW values.

The members of the LBR Working Group are as follows:

- Jim Cunningham, NH PUC
- Paul Dexter, NH PUC
- Jay Dudley, NH PUC
- Elizabeth Nixon, NH PUC
- Leszek Stachow, NH PUC
- Brian Buckley, Office of Consumer Advocate
- Donald Kreis, Office of Consumer Advocate
- Rebecca Ohler, NH DES
- Tomas Fuller, Eversource
- Christopher Goulding, Eversource
- Miles Ingram, Eversource
- Marc Lemenager, Eversource
- Karen Asbury, Unitil
- Deborah Jarvis, Unitil
- Eric Stanley, Liberty
- Heather Tebbetts, Liberty

B. Summary of LBR Calculations

The utilities’ LBR calculations for 2019 and 2020 are disaggregated for kWh and kW, as agreed to in the Settlement Agreement. The derivation of the key components of these calculations—kWh, kW, and Average Distribution Rates (ADR)—are described in sections III, IV and V. The impact of ratchets is discussed in section VI. The utilities’ calculations result in the forecasted kW and kWh savings amounts for 2019 and 2020 shown in Table 1 below, using the customer peak kW approach detailed in section IV, and based on planned measure installations from the 2018 – 2020 New Hampshire Statewide Energy Efficiency Plan. In addition, the template in appendix B provides the 2019 forecasted kWh and kW
Table 1. Forecasted Lost Base Revenues for Measures Installed in 2019 and 2020

<table>
<thead>
<tr>
<th>Program</th>
<th>kWh Savings</th>
<th>kW Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures installed in 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large C&I Retrofit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large C&I New Equipment and Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large C&I Energy Rewards RFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total Large C&I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small C&I Retrofit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small C&I New Equipment and Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small C&I Direct Install</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total Small C&I and Municipal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESHomes</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>ESProducts</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>HEA</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>HPwES</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Home Energy Reports</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Sub-total Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total, 2019 Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measures installed in 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large C&I Retrofit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large C&I New Equipment and Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large C&I Energy Rewards RFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total Large C&I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small C&I Retrofit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small C&I New Equipment and Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small C&I Direct Install</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total Small C&I and Municipal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESHomes</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>ESProducts</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>HEA</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>HPwES</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Home Energy Reports</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Sub-total Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total, 2020 Measures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 represents savings based on planned measure installations. As in 2017 and 2018, LBR collections
for 2019 and 2020 will be based on actual monthly measure installations, as detailed in this document.
II. Glossary of Terms

A. Annual Energy Savings: The reduction in electricity use (kWh) or in fossil fuel use (therms/MMBtus) associated with energy efficiency activities in a given year.

B. Average Distribution Rate: The Average Distribution Rate (ADR) is equal to the distribution revenue of a utility (e.g., revenues from kWh and kW rates) divided by consumption (e.g., kWh and kW consumption). In calculating an ADR for determining lost base revenue, customer, meter, and luminaire charges are excluded from distribution revenue.

C. Billing Determinants: Customer data used for billing during a specified period of time, including but not limited to number of customers, kWh usage, and kW usage by rate class.

D. Coincidence Factor: Coincidence factors represent the fraction of connected load expected to occur at the same time as a particular peak period (e.g., ISO-NE summer and winter system peak periods; or customer-specific peak periods) on a diversified basis. Coincidence factors are normally expressed as a percent. See Coincident Demand.

E. Coincident Demand: The demand of a device, circuit, or building that occurs at the same time as the peak demand of a utility's system load or at the same time as some other peak of interest. Examples of peak demand include:

 (1) Demand coincident with a utility system annual peak load

 (2) Demand coincident with ISO/RTO summer or winter peak, or according to performance hours defined by wholesale capacity markets

 (3) Demand coincident with a customer’s monthly peak demand days.

F. Connected Load: The maximum instantaneous power required by equipment, usually expressed as kW. Connected load kW savings generally reflect the difference in the maximum power draw of baseline and efficient equipment.

G. Degradation: The extent to which the unit energy consumption (UEC) of equipment increases as it ages. See Persistence.

H. Demand (electric): Demand refers to the amount of electric energy used by a customer or piece of equipment at a specific time, expressed in kilowatts (kW equals kWh/h).

I. Demand Charge: Bill charges based on a customer’s monthly maximum demand. For example, Eversource rate GV and rate LG customers are charged a per kW rate based on their highest 30-minute period of kW demand in a given month.
J. **Demand Savings:** The reduction in electric or gas demand from a baseline to the demand associated with the higher-efficiency equipment or installation. In the customer billing context, demand savings determine customer cost savings—and utility lost revenues—associated with monthly demand charges.

K. **Demand Ratchet:** Demand ratchets are a form of billing that is used to ensure that customers pay a fair share of the distribution system cost on a year-round basis. For example, a seasonal customer on demand billing may pay the higher of their current months demand or a specific percentage of their highest demand in the previous eleven months. This is a form of a demand ratchet.

L. **Distribution Rates:** Per unit costs necessary to recover the costs associated with an electric distribution system.

M. **Distribution System:** That part of the electric system that delivers electric energy to consumers.

N. **End-Use:** The specific purpose for which electricity is consumed (e.g. heating, cooling, lighting, etc.).

O. **EPRI:** Electric Power Research Institute

P. **Equipment Life:** The number of years that a measure is installed and will operate until failure. See Measure Life.

Q. **Expired kW:** kW associated with measures that have been retired from service. The retirement could be due to equipment age, renovation/removal, breakage, etc.

R. **Annual Hours of Use:** The number of hours a system or unit of equipment is in use (i.e. "on") during a year.

S. **In-Service Rate:** The percentage of measures incented by an efficiency program that are installed and operating. The in-service rate is calculated by dividing the number of measures installed and operating by the number of measures incented by an efficiency program in a defined period of time.

T. **Kilowatt (kW):** The electrical unit of power equal to 1,000 watts.

U. **Kilowatt-Hour (kWh):** The basic unit of electric energy equal to one kilowatt of power supplied to or taken from an electric circuit for one hour.

V. **Maximum Demand (kW):** The customer’s maximum demand, in kW, during a specified interval. For the purposes of demand charges, maximum demand is typically determined on a monthly basis. For example, demand charges for Eversource rate GV and rate LG customers are based on the customer’s highest 30-minute period of kW demand in a given month.
W. **Maximum Demand Factor (MDF):** The ratio of the maximum demand during an assigned period upon an electric-power system to the load actually connected during that time usually expressed in percent. The demand factor is always less than or equal to one.

X. **Measure Life:** The average number of years (or hours) that a group of new high-efficiency equipment will continue to produce energy savings or the average number of years that a service or practice will provide savings. Lifetimes are generally based on experience or studies. For retrofit or early retirement measures, the measure life may be altered to account for a change in baseline over time, more accurately reflecting the lifetime energy savings. Measure Life is a function of equipment life (see Equipment Life) and measure persistence (see Measure Persistence).

Y. **Net-to-Gross Ratio (NTG):** A factor representing net program savings divided by gross program savings that is applied to gross program impacts to convert them into net program load impacts. The factor itself may be made up of a variety of factors that create differences between gross and net savings, commonly including free riders and spillover. In New Hampshire, the NTG ratio is assumed to be 1.0, per the New Hampshire Energy Efficiency Working Group Report, 1999.\(^1\)

Z. **Peak Demand:** The maximum level of demand used during a specified period. The peak periods most commonly identified are annual, seasonal (summer and winter), and monthly peaks.

AA. **Persistence / Measure Persistence:** The duration of an energy consuming measure, taking into account business turnover, early retirement of installed equipment, and other reasons measures might be removed or discontinued. Measure persistence is generally incorporated as part of the measure life.

BB. **Realization Rate:** The ratio of measure savings developed from impact evaluations to the estimated measure savings derived from savings algorithms. Realization rates are based on various impact factors measured in evaluations, including in-service rates, coincidence factors, and hours of operation.

CC. **Sector:** Broad groups of electricity customers with similar characteristics and usage patterns. Residential, Commercial and Industrial (C&I) and Municipal are the primary sectors in the NH Saves programs.

\(^1\) As the report states, “although Group members agree that program designs should attempt to minimize free-riders, the Group concluded that the methodological challenges and associated costs of accurately assessing free-riders no longer justifies the effort required to net these out of cost-effectiveness analyses.” The same report allowed inclusion of spillover, but to date the utilities have not measured spillover or included it in the cost-effectiveness test. See https://www.puc.nh.gov/Electric/96-150%20%20NH%20Energy%20Efficiency%20Working%20Group%20Final%20Report%20(1999).pdf
DD. Tariff: A schedule of rates, charges and terms and conditions under which a regulated and tariffed service is provided to customers, filed by a utility and either approved by the commission or effective by operation of law.

III. Derivation of kWh Savings

The utilities will continue to use the same method for calculating kWh savings that has been used for prior years’ LBR reporting and collections. Although the method for kWh calculations is not within the scope of the LBR Working Group,² the method is described below so that this document provides a complete accounting of LBR calculations and inputs.

The following kWh calculation is applied for each measure type within the utilities’ C&I and residential programs.

\[
LBR \text{ kWh Savings} = \text{Gross kWh Savings} \times \text{Net to Gross Percentage} \times \text{In Service Rate} \times \text{Realization Rate} - \text{Retirement Adjustment}
\]

The calculation is applied on a monthly basis, for the cumulative measures installed year-to-date. To account for the fact that measures are installed over the course of a month (not all on the first day of the month), the utilities take the conservative approach of claiming savings beginning in the month of the *paid date or later*—which is generally around two months after measures are installed and generating savings.³ This ensures the utilities are conservative in their calculation to avoid overstating LBR. For LBR forecasts, the utilities divide total annual planned kWh savings by 12 to determine the average monthly kWh savings. Each component of the calculation is described in detail in the following sub-sections.

A. Gross kWh Savings

The gross kWh savings for energy efficiency measures are determined on a project-specific basis at the time of project installation/implementation. The savings are determined by project engineers and implementation contractors based on equipment specifications and information on baseline conditions at the project site. For an example of project-specific kWh savings calculations, see appendix A.

²Per Order No. 26,095 approving the Settlement Agreement, the LBR Working Group was established in 2018 to determine the kW values to be used in LBR calculations and to consider the general impact of customer peak load and the general impact of demand charge ratchets on those kW values.

³For example, in 2017, Eversource’s small business projects were installed 67 days prior to their paid date, on average, and Eversource’s large business projects were inspected 59 days prior to their paid date, on average.
B. Net to Gross Percentage – See description in Section IV below.
C. In Service Rate – See description in Section IV below.
D. Realization Rate – See description in Section IV below.
E. Retirement Adjustment – See description in Section IV below.
IV. Derivation of kW Savings

The calculations used to derive kW savings resulting from energy efficiency measures installed through the NHSaves programs are detailed below. The amount of kW savings resulting from any specific efficiency measure depends on how and when that measure is used. Therefore, kW savings vary significantly depending on the type of measure and the point in time for which savings are calculated.

The utilities’ LBR calculations were developed to identify the kW savings resulting from different efficiency measures at the time of customers’ monthly peak demand—i.e., the demand used to determine customers’ monthly demand charges. The NH utilities’ demand charges and other components of their tariffs are available at https://www.puc.nh.gov/Regulatory/companies-regulated-tariffs.htm.

The following kW calculation is applied for each measure type within the utilities’ C&I programs, as only these customers are currently assessed kW rates and therefore see bill reductions due to kW savings.

\[
LBR \ kW \ Savings = \text{Connected Load kW Savings} \times \text{Customer Peak Coincident Factor} \times \text{Net to Gross Percentage} \times \text{In Service Rate} \times \text{Realization Rate} - \text{Retirement Adjustment}
\]

The calculation is applied on a monthly basis, for the cumulative measures installed year-to-date. To account for the fact that measures are installed throughout a month (not all on the first of the month), the utilities take the conservative approach of claiming savings beginning in the month of the paid date—which is generally around two months after measures are installed and generating savings.\(^4\) This ensures the utilities are conservative in their calculation to avoid overstating LBR. For LBR forecasts, the utilities divide total annual planned kWh savings by 12 to determine the average monthly kWh savings and apply a maximum demand factor (see section A below) to determine planned monthly kW savings.

Each component of the calculation is described in detail in the following sub-sections, and a template with the calculations for the C&I programs’ 2019 planned installations is provided in appendix B.

A. Connected load savings (kW)

The connected load savings for energy efficiency measures are determined on a project-specific basis at the time of project installation/implemention. The savings are determined by project engineers and implementation contractors based on equipment specifications and information on baseline conditions at the project site. For an example of project specific kW savings calculations, see appendix A.

Planning assumptions: The project specific kW savings calculations, such as those shown in appendix A, are used to determine actual kW savings and lost revenues, but for forecasted kW savings, the utilities

\(^4\)For example, in 2017, Eversource’s small business projects were installed 67 days prior to their paid date, on average, and Eversource’s large business projects were inspected 59 days prior to their paid date, on average.
use several assumptions in the planning model to arrive at planned connected load savings for measures installed each year, by program and measure type (lighting, heating, cooling, etc.). These include:

1. **Measure quantities.** Planned quantities for each measure type, based on prior years’ actual measures installed.

2. **Gross annual kWh savings per unit.** Planned savings per unit, based on actual savings per unit from prior years’ installed measures.

3. **Maximum demand factor.** Ratio of kWh to kW (connected load), based on the ratio of kWh to kW savings for prior years’ projects.

4. **Maximum load reduction kW.** Equal to the product of gross annual kWh savings per unit and the maximum demand factor.

These assumptions and values are included in blue text in the template in appendix B.

B. Customer peak coincident factor (CF)

The kW demand reduction at customer peak is derived by multiplying the connected load kW savings by a factor representing the coincidence of usage (i.e., “percent on”) for each measure type at the peak hour for average customers in Eversource’s service territory for each month of the year.\(^5\)

Figure 1 below illustrates this concept, by combining (1) usage data for Eversource NH Rate GV customers and (2) end use load shape data from the Electric Power Research Institute (EPRI) to identify the coincidence factor (CF) for a specific end use—in this case interior lighting—at the average customer’s peak hour in July. The figure shows an average Rate GV customer peak of 2:00 PM in July, at which time 98.2% of interior lighting is in use.

\(^5\)Eversource NH Rate GV customers were chosen for determining average C&I customers’ peak hour, because they are a large, varied group of C&I customers over a similar geographic range as other utilities’ customers, and recent data were available on their hourly usage for each month.
The utilities chose this approach for calculating customer demand impacts—including the use of EPRI load shape data in particular—because (1) it is the most accurate methodology and data currently available for determining the impacts of energy efficiency measures on customer demand charges, and (2) it was the approach and the data source recommended in the January 23, 2018 memorandum from Optimal Energy to NHPUC staff. The EPRI load shape data are a web accessible database of best-available U.S. end-use load data for each customer sector (e.g., commercial and industrial) in each region of the country (e.g., Northeast). According to EPRI, the data are drawn from multiple sources, including EPRI’s field pilots, regional utility studies (e.g., BPA’s Pacific Northwest Residential Building Stock Assessment) or through historical collaborative activities such as the EPRI CEED (Center for End-Use Energy Data) PowerShape™ data of 2000-01. As stated on the EPRI website, “the objective of the Load Shape Library is to facilitate the collection, use and functionality of a library of representative electric load shapes by climate zone, geography or by utility. Representative load shapes are a challenge to acquire due to the cost to collect end use level load data. While EPRI and the utility membership work towards acquiring national and regional statistically representative load data, EPRI Program 170 A (End-Use Energy Efficiency and Demand Response Analytics) has developed an analytical framework with a web accessible database of best-available U.S. load data.” Based on Optimal’s recommendation, as well
as our review of the data, the NH utilities believe these data are the most suitable set of end use load shape data available for determining customer peak kW impacts of energy efficiency measures.

In applying these data to customer’s monthly load shapes, the utilities made several assumptions. First, EPRI’s load shape data are available for peak (summer) and off-peak (winter) seasons. The utilities’ calculations take the conservative approach of applying peak values to June, July, and August—the months of ISO-NE summer peak period—and off-peak values to all other months. Second, the data are available for average and peak weekdays. The utilities applied the peak weekday values, to reflect those days when customer’s individual monthly peaks were more likely to occur. Third, the EPRI load shapes available for commercial customers are more comprehensive than those available for industrial customers—e.g., commercial end use load shapes are available for interior lighting and exterior lighting, whereas industrial lighting load shape data are available for a lighting in general (not separated for interior/exterior). As a result, the utilities applied commercial load shapes rather than industrial load shapes for most end uses. Finally, to determine end use CF values for custom projects, the utilities used an average of the CF values for all other end uses.

Table 2 below shows the average customer peak hour for Eversource Rate GV customers for each month, the CF values based on EPRI’s data for each end use in that month, and the annual average CF. The template in appendix B illustrates how these values are applied to the LBR calculations.

Table 2. C&I Weekday Peak Hour End Use Coincident Factors (CFs)

<table>
<thead>
<tr>
<th>Month</th>
<th>Season</th>
<th>Peak (Hour Ending)</th>
<th>Cooling</th>
<th>Heating</th>
<th>Lighting Internal</th>
<th>Office Equipment</th>
<th>Refrig.</th>
<th>Ventilation</th>
<th>Water Heating</th>
<th>Lighting External</th>
<th>Machine/ Drives</th>
<th>Process/ Heating</th>
<th>Custom (average of other columns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>OffPeak</td>
<td>11</td>
<td>0.0097</td>
<td>0.7217</td>
<td>0.9700</td>
<td>0.9562</td>
<td>0.7592</td>
<td>0.9893</td>
<td>0.9820</td>
<td>0.0584</td>
<td>0.9939</td>
<td>0.9950</td>
<td>0.7435</td>
</tr>
<tr>
<td>Feb</td>
<td>OffPeak</td>
<td>11</td>
<td>0.0097</td>
<td>0.7217</td>
<td>0.9700</td>
<td>0.9562</td>
<td>0.7592</td>
<td>0.9893</td>
<td>0.9820</td>
<td>0.0584</td>
<td>0.9939</td>
<td>0.9950</td>
<td>0.7435</td>
</tr>
<tr>
<td>Mar</td>
<td>OffPeak</td>
<td>11</td>
<td>0.0097</td>
<td>0.7217</td>
<td>0.9700</td>
<td>0.9562</td>
<td>0.7592</td>
<td>0.9893</td>
<td>0.9820</td>
<td>0.0584</td>
<td>0.9939</td>
<td>0.9950</td>
<td>0.7435</td>
</tr>
<tr>
<td>Apr</td>
<td>OffPeak</td>
<td>12</td>
<td>0.0099</td>
<td>0.6158</td>
<td>0.9957</td>
<td>0.9874</td>
<td>0.7672</td>
<td>0.9893</td>
<td>1.0000</td>
<td>0.0500</td>
<td>0.9945</td>
<td>0.9953</td>
<td>0.7405</td>
</tr>
<tr>
<td>May</td>
<td>OffPeak</td>
<td>14</td>
<td>0.0105</td>
<td>0.5063</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7714</td>
<td>0.9821</td>
<td>0.9889</td>
<td>0.0500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7309</td>
</tr>
<tr>
<td>Jun</td>
<td>Peak</td>
<td>14</td>
<td>1.0000</td>
<td>0.0001</td>
<td>0.9820</td>
<td>0.9837</td>
<td>1.0000</td>
<td>0.9254</td>
<td>0.5748</td>
<td>0.0500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7516</td>
</tr>
<tr>
<td>Jul</td>
<td>Peak</td>
<td>14</td>
<td>1.0000</td>
<td>0.0001</td>
<td>0.9820</td>
<td>0.9837</td>
<td>1.0000</td>
<td>0.9254</td>
<td>0.5748</td>
<td>0.0500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7516</td>
</tr>
<tr>
<td>Aug</td>
<td>Peak</td>
<td>14</td>
<td>1.0000</td>
<td>0.0001</td>
<td>0.9820</td>
<td>0.9837</td>
<td>1.0000</td>
<td>0.9254</td>
<td>0.5748</td>
<td>0.0500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7516</td>
</tr>
<tr>
<td>Sep</td>
<td>OffPeak</td>
<td>14</td>
<td>0.0105</td>
<td>0.5063</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7714</td>
<td>0.9821</td>
<td>0.9889</td>
<td>0.0500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7309</td>
</tr>
<tr>
<td>Oct</td>
<td>OffPeak</td>
<td>14</td>
<td>0.0105</td>
<td>0.5063</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7714</td>
<td>0.9821</td>
<td>0.9889</td>
<td>0.0500</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7309</td>
</tr>
<tr>
<td>Nov</td>
<td>OffPeak</td>
<td>12</td>
<td>0.0099</td>
<td>0.6158</td>
<td>0.9957</td>
<td>0.9874</td>
<td>0.7672</td>
<td>0.9893</td>
<td>1.0000</td>
<td>0.0500</td>
<td>0.9945</td>
<td>0.9953</td>
<td>0.7405</td>
</tr>
<tr>
<td>Dec</td>
<td>OffPeak</td>
<td>11</td>
<td>0.0097</td>
<td>0.7217</td>
<td>0.9700</td>
<td>0.9562</td>
<td>0.7592</td>
<td>0.9893</td>
<td>0.9820</td>
<td>0.0584</td>
<td>0.9939</td>
<td>0.9950</td>
<td>0.7435</td>
</tr>
</tbody>
</table>

| Annual Average | 0.2575 | 0.4698 | 0.9848 | 0.9792 | 0.8238 | 0.9715 | 0.8849 | 0.0528 | 0.9970 | 0.9975 | 0.7419 |

C. Net to Gross Percentage

This percentage is assumed to be 100%, per the New Hampshire Energy Efficiency Working Group Report, 1999. As stated in the report, “although Group members agree that program designs should attempt to minimize free-riders, the Group concluded that the methodological challenges and

associated costs of accurately assessing free-riders no longer justifies the effort required to net these out of cost-effectiveness analyses.” The report also allowed inclusion of spillover, but to date the utilities have not measured spillover or included it in cost-effectiveness analyses. The utilities have made numerous efforts to design programs to minimize free-ridership by requiring customer investment of time and resources, such as through conservative, judicious use of up-stream and mid-stream offerings.

D. In-Service Rate

This rate reflects the percentage of incented measures that are installed and operating. Per program design, and consistent with other jurisdictions, C&I projects are inspected post-installation, and incentives are provided based on successful installation. Therefore, installation rates for C&I programs are 100%.

E. Realization Rate

This rate reflects the ratio of evaluated savings measured in impact evaluations to claimed savings based on utilities’ savings algorithms. Realization rates reflect various impact factors measured in evaluations, including in-service rates, coincidence factors, and hours of operation. Therefore, applying realization rates and other impact factors from the same study may result in double-counting these impacts.

As shown in the template in appendix B, the utilities’ calculations apply realization rates for each measure type from the best available, most recent impact evaluation of the New Hampshire C&I program, completed by DNV-GL in September 2015. Because these realization rates account for the impact of in-service rates, the utilities did not separately apply in-service rates from this evaluation.

F. Retirement Adjustment

The utilities’ kW savings will be adjusted by subtracting savings for measures that reach the end of their measure lives, using the same mechanism the utilities currently use as required by ISO-NE for forward capacity market reporting. Bates 237 and 238 provides a schedule of measure lifetimes for Eversource’s C&I programs. As shown, the shortest measure life in these programs is a 9-year measure life for Retrofit Occupancy Sensors, meaning retirement adjustments for these measures installed in 2019 would not occur until 2028. Measure lives are adjusted on a prospective basis, meaning whenever a measure’s life is altered via an EM&V study, all measures installed in the subsequent calendar year will have the new measure life applied, while all measures installed up to that point will have the old measure life applied.

V. Derivation of Average Distribution Rates (ADR)

A. Description: How is ADR calculated

The Average Distribution Rate (ADR) is equal to the distribution revenue of a utility (e.g., revenues from kWh and kW rates) divided by consumption (e.g., kWh and kW consumption). For lost base revenue calculated with savings from measures installed in 2018, kWh and kW revenue will be combined and divided by kWh to calculate a single ADR for each sector. For lost base revenue calculated based on savings for measures installed in 2019 and 2020, there will be separate kWh and kW Average Distribution Rates for each sector. Note that the Average Distribution Rates differ from utility to utility.

B. Discuss Distribution Rates and Billing Determinants used in the ADR calculation (i.e.: vintage)

Generally, distribution rates in effect at the time of the forecasted LBR plan shall be used for creating the LBR forecast. The forecast will also include the most recent calendar year of billing determinants. Upon reconciliation of LBR and calculating the actual LBR to be recovered, billing determinants and rates in effect during the calendar year covered shall be used. Thus, 2017 billing determinants and rates will be used for calculating actual 2017 LBR. The lost revenue calculation for 2017 will use 2017 EE savings (the first year lost revenue is assessed) and 2017 rates and tariffs. The 2018 lost revenue calculation will use 2017+2018 EE savings and 2018 rates and tariffs, if different, as all of these savings would have been billed under 2018 rates and tariffs. Future years will continue to be calculated in a similar manner, less any retired measures’ savings.

C. Summarize LBR and ADR schedules (attached in Appendices B and C).

Calculation of forecasted LBR for the Commercial & Industrial sector for 2019 is provided by utility in Appendix B. As shown, LBR is calculated using a single ADR for savings for measures installed in 2017 and 2018 and using separate kWh and kW Average Distribution Rates for savings for measures installed in 2019.

The calculation of Average Distribution Rates is provided by utility in Appendix C for illustration. As indicated above, generally, distribution rates in effect at the time of the forecasted LBR plan shall be used for creating the LBR forecast as well as the most recent calendar year of billing determinants.

As shown, the Average Distribution Rates are calculated by sector by taking the sector’s distribution revenue divided by the sector’s usage. For lost base revenue calculated with savings for measures installed in 2017 and 2018, kWh and kW revenue are combined and divided by kWh to calculate a single ADR for each sector. For lost base revenue calculated based on savings for measures installed in 2019 and 2020, there are separate kWh and kW Average Distribution Rates for each sector.

When actuals are calculated for LBR, the relevant period for both rates and billing determinants will be used. For example, 2017 LBR will use 2017 billing determinants and 2017 distribution rates.
VI. Discussion of Ratchets

The working group was tasked with considering the general impact of demand charge ratchets. A description of each utility’s ratchet provision and discussion of impact to kW savings from energy efficiency measures is provided below.

Eversource: For Eversource, only LG customers are potentially impacted by a ratchet. Please refer to page 67 of Eversource’s Tariff No. 9 for how demand is billed for these customers. Eversource’s analysis of customers billed under its ratchet concluded that ratchets had a 0% impact from energy efficiency measures. No ratchet adjustment is necessary.

Unitil: For Unitil, only its G1 class (customers with average use equal or in excess of 200 kVA and generally greater than or equal to 100,000 kWh each month) includes a ratchet provision. G1 customers are billed the highest of a) current month’s peak 15 min. kVA or b) 80% of previous 11 month’s peak 15 min. kVA. The data provided in Appendix D shows the effect of the ratchet on kVA billed to G1 customers who participated in energy efficiency in 2017.

As shown, ratcheted kVa for these customers is 5% higher than the metered kVa. Note that sector demand savings also include the G2 class which does not have a demand ratchet. However, this does not necessarily mean that installed energy efficiency demand savings were 5% lower due to the ratchet. For instance, a customer could be billed on a ratchet in the early part of the year and then complete an energy efficiency project in the middle of the year. The impact of the ratchet is still included in the percentage calculation although the ratchet and energy efficiency project have no relation to each other. In a second example, suppose a customer completes an energy efficiency project early in the year, but then later in the year, is billed on a ratchet due to a high summer peak caused by weather. The summer peak was still lower by the amount of the installed energy efficiency project thus the Company still lost revenue even though the ratchet was implicated. Even in instances where a ratchet may be billed for an entire year, an energy efficiency project would have had an impact on what that ratcheted demand was -- if not during the current year, then in the following year, since the ratchet only looks back 11 months. As agreed to in the settlement establishing this working group, it is not feasible to identify the impacts with precision and not feasible to track demand charge impacts on a customer by customer basis. Overall, the ratchet only comes into play for 4 months on average, and is very small in percentage terms, thus it has been determined that no ratchet adjustment to demand savings is necessary.

Liberty: For Liberty, its G-1 and G-2 rate classes include a monthly ratchet. The Company is in the process of reviewing whether or not it is appropriate for the G-2 rate class (customers with monthly usage of 20 kW to 200 kW) to include the ratchet and will be addressing the ratchet in its next rate case, to be filed in 2019. The calculation of the ratchet is provided in Granite State Electric’s Tariff No. 20 on page 98 for Rate G-1 and page 101 for Rate G-2.
Appendices

A. Example of Lighting Project Worksheet with kW Savings

<table>
<thead>
<tr>
<th>REPLACEMENT DESCRIPTION</th>
<th>QTY</th>
<th>TOTAL COST</th>
<th>UNIT COST</th>
<th>UTILITY INCENTIVE</th>
<th>OUT-OF-POCKET EXPENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14" 12W LED TL/UP L&B, 3500K</td>
<td>01</td>
<td>$3,621.11</td>
<td>$446.05</td>
<td>$1,613.55</td>
<td>$1,817.56</td>
</tr>
<tr>
<td>22" 8W LED TL/UP L&B, 3500K</td>
<td>64</td>
<td>$3,056.15</td>
<td>$43.76</td>
<td>$1,749.07</td>
<td>$1,749.07</td>
</tr>
<tr>
<td>22" 8W LED TL/UP L&B WITH EMERGENCY BALLAST, 3500K</td>
<td>13</td>
<td>$2,273.48</td>
<td>$174.94</td>
<td>$1,136.73</td>
<td>$1,136.73</td>
</tr>
<tr>
<td>12" 8W LED TL/UP L&B, 3500K</td>
<td>60</td>
<td>$3,893.08</td>
<td>$64.88</td>
<td>$1,946.53</td>
<td>$1,946.53</td>
</tr>
<tr>
<td>24" 12W LED TL/UP L&B, 3500K</td>
<td>107</td>
<td>$6,134.88</td>
<td>$57.34</td>
<td>$3,067.43</td>
<td>$3,067.46</td>
</tr>
<tr>
<td>24" 12W LED TL/UP L&B WITH EMERGENCY BALLAST, 3500K</td>
<td>11</td>
<td>$1,849.06</td>
<td>$168.19</td>
<td>$924.53</td>
<td>$924.53</td>
</tr>
<tr>
<td>7W LED CFL REPLACEMENT - VERTICAL PLUG-IN LAMP BYPASS BALLAST, 3500K</td>
<td>44</td>
<td>$1,851.38</td>
<td>$42.08</td>
<td>$925.70</td>
<td>$925.70</td>
</tr>
<tr>
<td>9W LED CFL REPLACEMENT - HORIZONTAL PLUG-IN LAMP BYPASS BALLAST, 3500K</td>
<td>27</td>
<td>$1,818.83</td>
<td>$43.03</td>
<td>$580.91</td>
<td>$580.91</td>
</tr>
<tr>
<td>8W LED CFL REPLACEMENT - HORIZONTAL PLUG-IN LAMP BYPASS BALLAST, 4000K</td>
<td>9</td>
<td>$367.28</td>
<td>$43.03</td>
<td>$193.94</td>
<td>$193.94</td>
</tr>
<tr>
<td>17W LED SCREW IN LAMP, 4000K</td>
<td>10</td>
<td>$305.85</td>
<td>$30.58</td>
<td>$196.92</td>
<td>$196.92</td>
</tr>
<tr>
<td>52W LED KNUCKLE MOUNT NARROW FLOOD, 4000K</td>
<td>2</td>
<td>$1,104.62</td>
<td>$552.31</td>
<td>$552.31</td>
<td>$552.31</td>
</tr>
<tr>
<td>41" 12W LED TL/UP L&B, 3500K</td>
<td>12</td>
<td>$5,322.85</td>
<td>$444.49</td>
<td>$2,856.91</td>
<td>$2,856.91</td>
</tr>
<tr>
<td>8W LED BR10 SCREW IN LAMP, 2700K</td>
<td>4</td>
<td>$85.85</td>
<td>$21.46</td>
<td>$42.92</td>
<td>$42.92</td>
</tr>
<tr>
<td>7W LED PAR20 SCREW IN LAMP, 2700K</td>
<td>8</td>
<td>$179.20</td>
<td>$22.40</td>
<td>$89.60</td>
<td>$89.60</td>
</tr>
<tr>
<td>PERMIT FEE</td>
<td></td>
<td>$105.00</td>
<td>N/A</td>
<td>$52.50</td>
<td>$52.50</td>
</tr>
<tr>
<td>WASTE PACKAGING</td>
<td></td>
<td>$723.40</td>
<td>$361.70</td>
<td>$361.70</td>
<td>$361.70</td>
</tr>
</tbody>
</table>

Total: 442

$32,664.00
N/A
$16,331.94
$16,332.06

PLEASE PAY THIS AMOUNT:
$16,331.94
Table

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>KW</th>
<th>Cost</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

![Diagram Image]

Handwritten Notes

5/26 Post-Install
Flag lights 63W not 52W as reported.

\[\text{AKW} = 10.25 \text{W} \]

\[\text{AKWh} = 24197.992 \]
B. 2019 LBR savings calculations for the Commercial & Industrial Sectors.

LBR template, Eversource - May 16.
LBR template, Unitil - May 16.xlsx

C. Sample ADR calculations

Eversource Illustrative ADR.xlsx
Unitil Illustrative ADR.xlsx

D. Ratchet Support Analyses

Eversource Ratchet Analysis.pdf
Unitil Ratchet Analysis.pdf