New Hampshire Lost Base Revenue Working Group
February 28, 2018
Potential Methods for Estimating Demand Charge Component of LBR

• Analysis of customer-specific kW savings and impacts on demand charges

• Summer kW – demand savings based on ISO-NE summer peak period

• “Combined” kWh and kW – method being used in 2018, using an average distribution rate that combines energy and demand components

• Connected Load kW – demand savings based on measures’ rated kW

• Other methods?
Energy Efficiency Affects Demand Charges in Complex Ways

• Analysis of customer-specific kW savings and impacts on demand charges is not economically feasible due to the level of complexity.

• Complexity is created by different rate structures, ratchet charges, customer-specific and measure-specific use patterns

• Optimal Energy, January 23 2018 memo on LBR: “The most accurate way to address the issues noted above would be to assess the effect of reduced consumption on each customer’s individual bill from marginal changes in energy and demand, but this is clearly far too onerous even if it may be technically possible.”
Different Peak Definitions: Summer Peak vs. Customer Peak

- ISO-NE summer peak vs. customer peak: kW savings during ISO-NE peak will generally be smaller than customer peak kW savings.

- ISO-NE summer peak period: nonholiday weekdays, 1:00 p.m. to 5:00 p.m., during June, July, and August. Used for Forward Capacity Market resources.

- Customer peak: the customer’s highest 30-minute period of demand in a given month. Used to determine actual demand charges.

1Eversource rates GV and LG. Additional factors are applied in some cases, e.g., ratchet charge for rate LG, adjustments for peaks between 8:00 PM – 7:00 AM, etc. See https://www.eversource.com/content/docs/default-source/rates-tariffs/electric-delivery-service-tariff-nh.pdf?sfvrsn=7fb7f062_22
Peak definitions: ISO-NE vs. Customer Peak

Peak definitions: ISO-NE vs. Customer Peak, *indoor lighting, summer peak*

Customer peak reduction (determines demand charge)

ISO-NE summer peak coincident kW reduction (average reduction over this period)

Peak definitions: ISO-NE vs. Customer Peak, *indoor lighting, winter peak*

Simplifying Assumptions: kW vs. kWh

• The “combined” calculation used in 2018 assumes that efficiency measures result in kWh and kW being lost in the same proportions.

 • customer kWh savings/customer kWh consumption =
 customer peak kW reduction/customer peak kW demand

• Is this a reasonable assumption?
Simplifying Assumptions: kW vs. kWh

• kW vs. kWh—the more a measure’s use aligns with peak periods, the greater the kW impact will be relative to the kWh impact

 • Indoor lighting
 • Outdoor lighting
 • Cooling
 • Heating
 • Refrigeration

Indoor lighting: kW savings > kWh savings

<table>
<thead>
<tr>
<th></th>
<th>Avg July weekday kW reduction in peak hour</th>
<th>30.1 kW</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg July weekday kWh reduction</td>
<td>395.6 kWh</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Avg Dec weekday kW reduction in peak hour</td>
<td>24.9 kW</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Avg Dec weekday kWh reduction</td>
<td>344.3 kWh</td>
<td>10%</td>
</tr>
</tbody>
</table>

Eversource NH Rate GV (100-1000 kW) Customer

Average Weekday kW Use by Hour
Outdoor lighting: kW savings < kWh savings

<table>
<thead>
<tr>
<th>ISO-NE summer peak hours</th>
<th>ISO-NE winter peak hours</th>
<th>Customer peak hour</th>
</tr>
</thead>
</table>

ISO-NE summer peak hours

<table>
<thead>
<tr>
<th>Avg July weekday kW reduction in peak hour</th>
<th>1.0 kW</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg July weekday kWh reduction</td>
<td>146.6 kWh</td>
<td>4%</td>
</tr>
<tr>
<td>Avg Dec weekday kW reduction in peak hour</td>
<td>1.0 kW</td>
<td>1%</td>
</tr>
<tr>
<td>Avg Dec weekday kWh reduction</td>
<td>133.2 kWh</td>
<td>4%</td>
</tr>
</tbody>
</table>
Refrigeration: kW savings ≈ kWh savings

<table>
<thead>
<tr>
<th></th>
<th>Avg July weekday kW reduction in peak hour</th>
<th>16.2 kW</th>
<th>8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg July weekday kWh reduction</td>
<td>284.9 kWh</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Avg Dec weekday kW reduction in peak hour</td>
<td>10.9 kW</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Avg Dec weekday kWh reduction</td>
<td>204.9 kWh</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>

Eversource NH Rate GV (100-1000 kW) Customer

Average Weekday kW Use by Hour
Cooling: kW savings > kWh savings

<table>
<thead>
<tr>
<th>ISO-NE summer peak hours</th>
<th>ISO-NE winter peak hours</th>
<th>Customer peak hour</th>
</tr>
</thead>
</table>

Average July weekday kW reduction in peak hour: 20.6 kW (10%)

Average July weekday kWh reduction: 226.6 kWh (6%)

Average Dec weekday kW reduction in peak hour: 1.5 kW (1%)

Average Dec weekday kWh reduction: 25.3 kWh (1%)

Eversource NH Rate GV (100-1000 kW) Customer

Average Weekday kW Use by Hour
Heating: kW savings ≈ kWh savings

<table>
<thead>
<tr>
<th>Period</th>
<th>Avg July weekday kW reduction in peak hour</th>
<th>Avg July weekday kWh reduction</th>
<th>Avg Dec weekday kW reduction in peak hour</th>
<th>Avg Dec weekday kWh reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO-NE summer peak hours</td>
<td>0.0 kW</td>
<td>0.7 kWh</td>
<td>10.9 kW</td>
<td>197.3 kWh</td>
</tr>
<tr>
<td>ISO-NE winter peak hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer peak hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heating: kW savings ≈ kWh savings

Eversource NH Rate GV (100-1000 kW) Customer
Average Weekday kW Use by Hour
Impact of Efficiency Measures on kW vs. kWh

Note: Based on average weekday load.
Impact of Efficiency Measures on kW vs. kWh

Note: Based on average weekday load.
Sources

• Eversource New Hampshire C&I load shapes, from https://www.eversource.com/content/nh/about/about-us/doing-business-with-us/energy-supplier-information/electric---new-hampshire

• End use load shapes from http://loadshape.epri.com/enduse, average weekday, peak & off-peak for NPCC/NE region