

Pressure Issues

- Pressures are dangerously high as recognized by Abenaki, Twin Mountain FD and NHDES
- System maintenance is problematic because of dangerous conditions (valve exercising, flushing, flow testing, etc.)
- Excessive power consumption
- Potential for high water loss
- Pressures exceed building codes/state regulations of 80-100 psi
- Customers incur extra costs for pressure reducing valves (PRVs) and maintenance

Pressure Issues (Cont.)

- Genuine risk of catastrophic failure in the system (FX Lyons experienced a serious incident at pump station in 2011 resulting in TV coverage)
- Severe pressure surges/waves up to 250 psi have occurred in the past at the Omni Resort and Bretton Arms hotels
- Other significant failures/incidents have occurred
- Past non-renewal of insurance coverage due to significant damage claims in 2016

Water Hammer

friction losses sette the wave.

Water Hammer

- Photo of a dramatic water hammer effect. This is a booster pump station that was destroyed by a pressure surge
- Water hammer is also responsible for pipeline failures

Goals

- Establish lower pressure gradients for the system
- Maintain high level of domestic service
- Improve system safety, reliability and operation
- Maintain adequate fire flows per ISO recommendations
- Reduce lost water (UAW)
- Reduce power consumption
- Upgrade the system and reduce operating and maintenance costs over time
- Improve monitoring and treatment process

Pressure Reduction Project Cost and Phasing

- Total project cost approximately $\$ 2.3 \mathrm{M}$
- Construction and testing of three booster stations
- Water main extensions new well pumps and motors
- New water storage tank
- Phase 1: Reduce pressure at well \# 1 and well \#2
- Phase 2: Replace water storage tank
- Phase 3: Reduce overall system pressure to 100 psi max

Phase 1

- Phase 1 project cost approximately $\$ 940,000$
- Reduce pressure at pump house (wells) to approximately 100 psi
- Construct one new booster station (BPS)
- Construct a direct transmission main from wells to new BPS
- Maximum system pressure at OMNI and at low elevations will remain at 200 psi until next phases are implemented
- All components installed in easements obtained from OMNI

Interim Solution: Phase 1

Benefits of Phase 1

- Postpone other improvements and associated costs while achieving the goal of reducing pressure at well
- Gets closer to final project outcome
- Phase 1 improvements can stand alone and integrate into overall project while becoming immediately used and useful.
- Immediate reduction in pump house pressure
- Reduced water hammer and high pressure concerns (at well but not in total system)
- No change in OMNI pressure or fire flow
- Allows for phased in costs (mitigate amount of rate increases)

Total Project Cost and Phasing

- Phase 1 - Interim system improvements $\$ 940,000$ (12 months). Reduction in well house pressure.
- Phase 2 - New water storage tank $\$ 500,000$ (year 2). This will replace the existing tank.
- Phase 3 - Construction of two booster stations and other system improvements $\$ 900,000$ (years 3 and 4). Lowers system pressure to 100 psi, max. Ensures adequate fire protection pressure and flows.

Phased Rate Increases

- Phase 1 Rate Increase 28\%
- Phase 2 - TBD
- Phase 3 - TBD

Next Steps - Phase 1

- Obtain easements
- Design Phase 1
- PUC approval
- Phase 1 improvements over 1 construction season

Crawford Ridge Association

"

 ${ }^{178} 8_{89}$ (4)

$$
\begin{aligned}
& \mathrm{S}^{3} \mathrm{a} \\
& 3.12 \\
& 4 \mathrm{c} \\
& 18.13 \\
& 0.43 \mathrm{~A}
\end{aligned}
$$

Drummönd Mtn. Shop

